📏 Spectrum Measures#

Note

This example shows the interactive capabilities of Matplotlib backends, and this will not appear in the static documentation. Please run this code on your machine to see the interactivity.

In this tutorial you will learn how to measure data from spectrums. Although there are many tools to get spectrum measure we are interested in select data from spectrum. Since we are interested into analyze birdsongs, we want to measure the maximum and mimum frequency of the theme and trill, number of trills, trill rate, trill and theme length, etc.

Libraries#

Import the required classes and functions from wavesongs:

%matplotlib ipympl

from wavesongs import plot
from wavesongs.objs.song import Song
from wavesongs.utils.paths import ProjDirs
from wavesongs.utils.tools import get_measures

Project Directory#

audios = "./assets/audios"
results = "./assets/results"

proj_dirs = ProjDirs(audios=audios, results=results)

Define Song#

# Region of Interest
tlim_roi = (0.7, 2.7)

copeton_song = Song(proj_dirs, file_id="574179401", tlim=tlim_roi)
copeton_song.acoustical_features(umbral_FF=1.4, NN=256, ff_method="yin", flim=(1e2, 2e4))

plot.spectrogram_waveform(copeton_song, tlim=tlim_roi, save=False)
../_images/7b4363959319731332a5032aa64e4c7c8aaa63978d85c2e80950ad6c2618a80f.png
copeton_song.play()

Select Data#

klicker_data = plot.spectrogram_data(copeton_song)
../_images/e2e3719e17a9da32aa4fafb36d8db01e5555a54933632054b173024b85fed5d3.png

You will have a similar image as below.

measures_example

Data measures example#

Measures Data Frame#

df_measures = get_measures(klicker_data, copeton_song, save=False)
df_measures
fmax fmin theme_trill_time_sep trill_bw trill_rates trill_len_times trill_len_freqs trill_slopes trill_tinis trill_tends ... theme_tinis theme_tends theme_types themes_avg_len_time themes_band_width theme_sep_freq_means theme_sep_time_means theme_sep_freqs theme_sep_times no_themes
0 8847.391083 2511.227834 -0.471877 5677.202875 18.700922 [np.float64(0.050308468411643714), np.float64(... [np.float64(5523.764959048709), np.float64(562... [np.float64(-109797.91540961032), np.float64(-... [np.float64(1.9849188047711863), np.float64(2.... [np.float64(8661.690974019351), np.float64(877... ... [np.float64(0.8823403248272411), np.float64(1.... [np.float64(5470.989898989899), np.float64(558... ['down', 'down'] 0.510553 2483.266605 2005.715335 0.011908 [np.float64(2005.7153351698807)] [np.float64(0.011907939580554583)] 2

1 rows × 33 columns