wavesongs.models.bird#
Methods to implement the motor gesture model for birdsongs.
Functions
|
|
|
|
|
|
|
|
|
- wavesongs.models.bird._PARAMS = {'C': 343, 'Ch': 1.43e-10, 'L': 0.025, 'MB': 10000.0, 'MG': 20, 'RB': 5000000.0, 'Rh': 24000.0, 'gm': 40000.0, 'r': 0.65}#
Model parameters
Birdsongs model parameters [A1].# Constant
Description
Value
Unit
\(\gamma\)
Time scaling constant
40000
\(dms\)
\(C\)
Speed of sound in media
343
\(m / s\)
\(L\)
Trachea length
0.025
\(m\)
\(r\)
Reflection coeficient
0.65
\(dms\)
\(Ch\)
OEC Compliance
1.43
\(m^3 / Pa\)
\(MG\)
Beak Inertance
20
\(kg / m^4\)
\(MB\)
Glottis Inertance
10000
\(kg / m^4\)
\(RB\)
Beak Resistance
5000000
\(s\; kg / m^4\)
\(Rh\)
OEC Resistence
24000
\(s\;kg / m^4\)
Where \(dms\) means dimensionless.
- Type:
dict
- wavesongs.models.bird._F1 = 'ys'#
First linear equation. Where \(x\) is the labial position and \(y\) the labial wall velocity.
\[\frac{dx}{dt} = y\]- Type:
str
- wavesongs.models.bird._F2 = '(-alpha-beta*xs-xs**3+xs**2)*gamma**2 - (xs+1)*gamma*xs*ys'#
Second linear equation. Where \(x\) is the labial position and \(y\) the labial wall velocity.
\[\frac{dy}{dt} = \gamma^2(-\alpha-\beta x-x^3+x^2) - \gamma(x+1)x y\]This equation is obtained using the Bogdanov–Takens bifurcation [A1].
- Type:
str
- wavesongs.models.bird._V_MAX_LABIA = -5000000.0#
Maximum labia walls velocity.
- Type:
float
- wavesongs.models.bird._Z = {'a0': 0.11, 'b0': -0.1, 'b1': 1, 'b2': 0}#
Motor gesture curves, air-sac pressure (\(\alpha\)) and labial wall tension (\(\beta\)). This function has two approaches:
(1)#\[\begin{split}\begin{equation} \begin{aligned}[c] & \text{Performance}\\ \\ & \alpha(t) = a_0 \\ & \beta(t) = b_0 + b_1 \tilde{FF} + b_2 \tilde{FF}^2 \end{aligned} \qquad\qquad\qquad \begin{aligned}[c] & \text{Interpretability}\\ \\ & \alpha(t) = a_0 \\ & \beta(t) = b_0 + b_1 t + b_2 t^2 \end{aligned} \end{equation}\end{split}\]The best performance, with the lowest relative errors, is obtained when the rescaled fundamental frequency is used as input through a quadratic composition, with \(\tilde{FF}=FF/10^4\).
- Type:
dict
- wavesongs.models.bird.bifurcation_ode(f1, f2)[source]#
- Parameters:
f1 (str)
f2 (str)
- Returns:
beta_bif (np.array)
mu1_curves (np.array)
f1 (lambda functions)
f2 (lambda functions)
Example
>>>
- wavesongs.models.bird.alpha_beta(obj: Any, z: Dict = {'a0': 0.11, 'b0': -0.1, 'b1': 1, 'b2': 0}, method: Literal['best', 'fast'] = 'best') List[array] [source]#
- Parameters:
- Returns:
alpha (np.array([1,2…N])) – Bronchis pressure, also known as air-sac pressure.
beta (np.array) – Labial tension.
Example
>>>
- wavesongs.models.bird.motor_gestures(obj: Any, curves: List[array], params: Dict = {'C': 343, 'Ch': 1.43e-10, 'L': 0.025, 'MB': 10000.0, 'MG': 20, 'RB': 5000000.0, 'Rh': 24000.0, 'gm': 40000.0, 'r': 0.65}) Syllable [source]#
- Parameters:
pramams (Dict)
- Returns:
synth – Synthethic syllable with same parameters except for s and vs
- Return type:
Example
>>>
- wavesongs.models.bird.set_z(obj, z: List[float] | Dict = {'a0': 0.11, 'b0': -0.1, 'b1': 1, 'b2': 0}) Dict [source]#
- Parameters:
z (list[float] | dict) – [a0,a1,a2_,b,b1,b2,gamma]
- Returns:
z
- Return type:
dict
Exmaple#
>>>
- wavesongs.models.bird.set_params(obj, params: Tuple[float] | Dict = {'C': 343, 'Ch': 1.43e-10, 'L': 0.025, 'MB': 10000.0, 'MG': 20, 'RB': 5000000.0, 'Rh': 24000.0, 'gm': 40000.0, 'r': 0.65}) Dict [source]#
- Parameters:
params (list[float] | dict) – [a0,a1,a2_,b,b1,b2,gamma]
- Returns:
params
- Return type:
dict
Exmaple#
>>>